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Among electromechanical systems Routh’s theorem covers systems with superconduc- 
tive loops. We disregard those exceptional cases when both the quadratic forms mention- 
ed above vanish for one and the same z~i, . . . , D,_,. Then the preceding discussion 

signifies that the forms of equilibrium under the action of a magnetic field which are 
stable when the field is created by loops with finite conductivity, are stable also for 
superconductivity, but forms exist which are stable only in the case of superconductive 

loops. Systems with superconductive loops possess, consequently, qualitative singularities 
in the “purely mechanical” sense being considered here. 
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The applications of normal forms (see [1] for the history and a bibliography) 

to nonlinear oscillations have been outlined in [2]. As one of the applied prob- 
lems we indicate the investigations of Ishlinskii ( 133, Appendix 2) in [4]. One 

unsolved problem that remains is the derivation of recurrence formulas for com- 
puting the coefficients of the normalizing transformations and of the normal 
forms. These formulas have been derived below for a general case in the theory 

of oscillations (the absence of nonprime elementary divisors in the matrix of the 
linear part) on the basis of Briuno’s theorem Cl]. 

1. Statement of the problem. Let an oscillatorysystem be described by an 
nth-order autonomous system of differential equations, in which the variables can also 

be complex valued. We assume that the elementary divisors of the matrix of its 

linear part are prime. For oscillatory systems with Hermitian or unitary matrices of the 
linear part the latter condition is fulfilled by virtue of the Weierstrass theorem (for ex- 
ample, see [5], Sect. I. 1.14). We shall assume that the original system has already been 
reduced to diagonal form and that its right-hand side is analytic in some neighborhood 
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of the null values with, in general, complex coefficients 

‘2 = =LxV + fj 2 ai ,,,, j,Xj,. , . Xj, 
x=2 

(YZI,..., n) (1.1) 

The vector A =1 (At, . . . , h,) is assumed nonzero, i. e. as having at least one nonzero 
component. The coefficients are assumed to be symmetrized, i. e. 

” 
aj2j, = ahjzl 

a;&... j,} = 
ihn (X = 3, 4, .; v = 1,. . ., 7~) 

and everywhere { ap . . .o} denotes any permutation of the positive integers a, p,, . . , 
o. In (1.1) and everywhere without so specifying the summation over twice-occurring 
indices, taking the values 1, 2, . . ., n independently of each other (by virtue of the 
symmetry of the coefficients). 

By Briuno’s theorem ( Cl], Sect. 0, Para. I I and Chap. I, Sect. 1, Para. I) there exists an 
invertible (but, in general, nonunique and, in some cases, divergent) normalizing trans- 
formation with, in general, complex coefficients (we represent it again in a symmetrized 

form) 

xV = YY + 5 “;,.., jxYj,. * * Yi* (Y = 1, . . ., II) (1.2) 

x=2 

(xrlj, = u.;,Y.~, a;! ,.,, j,, = idem; 3c == 3, 4, . . .; v =- 1, . . ., n) 

taking system (1.1) to the normal form 

d.u., 
- = h”Y” + Yv dt 2 g,Qy:*. . . y;” (Y = 1, . . ., IL) 

(A. Q)-o 
(1.3) 

Here Q = (q1, . . . , qn) is a vector with integral components, moreover, 

qda-1, qj>O (i # v) (v, i - 1~ . . ., n) (1.4) 

and g’“Q are nonsymmetrized coefficients of the normal form. The summation in (1.3) 

takes place only over the resonance terms satisfying the resonance equation 

(h.Q)Z:~lq,+...+h,q,=O (1.5) 

kt us symmetrize the coefficients of the normal form (1.3) and write, it as 

d.y, 
dt = LY” + : z: q ,...j xYil. * * Yj, (v = 1, . . ., II) (14 

X.=2 

((piZjl = ‘prti,, ‘pyj ,,.. ix) =id em; 3c -3, 4, . . .; v = 1, . . ., n) 

It is understood that the nonzero coefficients r&. . j, in (1.6) are determined by repre- 

sentation (1.3). 

2. Fundrmentrl identities, Substituting (1.2) into (1.1) we obtain, by vir- 
tue of (1.3). the following formal identities : 

2 Cpi;j,Yj,Yj, -I- . . . + 2 $)y,,,.jxYjl. - . Yj, + . . . + 2 aili (Yj,'Yh + Yh?lj,') + - * - 

z) uy,,,, j, (y',,lJjz. . 0 Yj, + - - e + Yj, . - . 

Yj,. s s Yj,_,Yj,‘) + . . - = A, 2 arti2Yj,Yi2 + - - - 
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(Y = 1,. . . , n) 

Here and below, in correspondence with (1.2) aih = 6j, (i, 12 = I, . . . , n) (6jh is the 
Kronecker symbol). 

Taking (1.6) into account we write out the terms with the /C th powers of the variables 
in these identities 

2 @i + . . . -t ki,) xiy,.,.jk Yj, . . . Yjk E hv 2 Cl: ,,,, j,yj, . . . l/j, -1 

Yj,l . . . yj,,l * . . yi,x. . . yj; + 2 UJ ,,.. j,yj, . . . yj, t2’ ‘= I? 1 ‘I) (2.1) 
x 

Here ltl, . . ., pk_, are positive integers. bet us compare the coefficients of Yj, . . . 

Yj,, where il, . . ., jk is any fixed sequence of positive integers not exceeding n. 
Nonsymmetric coefficients generated during the computations must be symmetrized 
because the coefficients a;, i, 
condition. 

and vr, j, to be determined are subject to this 

In identities (2.1) in the second term on the left in every summand of the sum from 
y=l to Y we replace the summation indices in the following way: jl? . . ., j+1, 

JF+l, . . ., jx by ii, . . ., ix_1, respectively ; index jIL by i and the indices jtl’ , 

. . ., jr’,_, by i,, ix+lr . . ., ik ,respectively. It is obvious that all the additive sums. 
from l_~ = 1 to x are like and, therefore, we represent them as one of the additivesums 

taken x times. To symmetrize the latter we examine all combinations PI, . . ., px-l 
of the x - 1 positive integers from 1, . . . , k (we denote their number by CkX-l). 
Finally, we denote the summation indices ip1, . . ., ipr_1 by j;,,, . . ., jPv.__i, while 
the rest of the indices ii, . . ., il, by jX’, ii,,, . . .7 jk’ . 

We have thus carried out the transformations 
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where p [ I] E pl, . . . , p [x - I] = &I. Here ST,“, ., ‘,;,;l’ x-l denotes summation 
over all combinations of x - 1 positive numbers from 1, . . . , 1~. We remark that 

the numbers j, , , . . . , jjJl _I can be (even all of them) like, because they (as also j x’, 
.’ . , 

]/.+I, . . .7 lk ; range during the summation over the values 1, . . . , IZ independently 
of each other. However, as regards the indices on i or i, they are all distinct, and 

rhat is why the combinations are a type of couplings. 
Let us tranform the second term on the right in (2.1). We replace the summation 

indices jll, . . ., jllll, . . ., jlx, . . ., jz, (pl t . . . f 1-1~ -~ xl) by jl, . . ., 
jh. To symmetrize the coefficient of yj, . . .yi, we consider all combinations pl, . . , 
plr, of the pI positive integers from 1, . . ., k (we denote their number by Ckpl), next 

all combinations P~+~, . . ., P~~+~, of the ~12 positive integers 1, . . . , k\pI, . . ., 
pP, (we denote tneir number by C;L~,> , etc. , all the way up to the combinations 

Ph-P,-P,_l~kl, * * ., Pk-v.,.,of ~~-1 from the remaining flX_l f pX positive integers 

1 
&‘l 

. .7 k\p,, * - -, Ppt, PI*ltlr * * ., p~-px-px_l (we denote their number by 
) Thus 

P”x-~+PK * 
2 2:: ,I . . .2x 

31'...3p, j,?.& 
yj,1 . . . y., . . . yj,x . . . y,, = 

j,l...., j4; 
9, +x 

! )( 

2 ,c$I&&. . . ,oil;~I;tlL,,-l sp[k-i*(x)-l*(K-l)tll,.... p[k-P(x)1 
l,..., h’\p[l] ,..., P[k-iL(X.)-i*(X-l)] * * . 

?I...., ‘k 

. . . so>..., k\P:ll,... P[W)J 
P[r(1)+113...> pw(lww)1 gll’.y P[!YOl & 

> . JP[~I..~~PW(I)I &j~[!*(lf+~l.~.jp[iL(l)fl*(2)1 . . . 

k-1 lx 

. . . aj,[~-~~(x)-~*(x-~)+l]...jp[~-i*(x)l ajp[k-~(x)+l]...jpr~] 7JA . . + Yj, (2.3) 

where here and below we have denoted p (X) = pX, p [m] G pm. Here s~~.i:‘.‘,~’ ’ ““)’ 

denotes summation over all combinations of the pI positive numbers PI, . . ., pp., 

from 1, . . ., , k. ‘+(1)+11. .p[E”.(lhA(2)1 
1, .k\P[ll, . .P[Wl denotes summation over all combinations of 

the pZ positive integers P~,+~, . . . , pPltt*, from the remaining k - ~~ positive inte- 

gers 1, . . ., k\p,, . . ., ppI ,etc. 
Now, using (2.2) and (2.3) we write identities (2.1) in the symmetrized form 

k-l 

~lpY,.,,ik~j,...Yjk+ 2 ~(2.2)t-~(hj,+...+hjk-hv)(rrl...jk~j,...yjk: 
x-2 

k-l n 

(za4) 

x--;? ir...., ix-l IL,+...+!+=k 

Here, for brevity, 2 (2.2) and Z (2.3) denote the entire right-hand side of the last 

equality in (2.2) and the entire right-hand side of (2.3), respectively. 
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3. Computational alternative. We introduce the symbol 

(3.1) 
I, if 

A,Y,...j = 

h, ::TZ hj, + . . . + hjk 

k 

i 
o 

7 if h~-_i= hj, + . . ~ + hjk 

(v, il, . * . , jh. := I, . . . . , n) 

The following alternative holds. 
I) Let the values of 21, jI, . . ., jk (and of the real parameters of the original 

oscillatory system, on which h,, kj,, . . ., hj, depend) be such that the parontheses in 
the last sum in the left-hand side of identities (2.4) is nonzero, i.e. A;, . . .i,, = 0. 
By equating the terms with yj,. . . gjl, in the left- and right-hand sides of identities 
(2.4), we note that under the assumption made, such a term is automati~lly absent from 

the first sum on the left. Indeed, returning to representation (1.3). we write this term in 
the form 

Ij&.* .j,%, * * * ~~~i~~l 

For this term (A*Q) = hj, *1 + . . . + hjk.i + A,=( -1) =f= 0, while according 
to representation (1.3) only those terms occur in the first sum on the left in (2.4) for 
which (12. Q) = 0. By equating in identities (2.4) the coefficients of yj, . . . yj,, 

we obtain a formula for the coefficients of the normalizing transformation (1.2) 

" 
%,...j, - 

1 - q-j, 
kj, i- * * . i- hjk - A, qs....i, (3.2) 

p[k+(x)-EL x-l)tll,...,Prk-IY~)I 
I,..., k\P[l !I . . . . . P[k-l-"fx)-F(x-l)l * * * 

~~~~~l~tll~...~Pr~(lf+~*(2~1 .#'I..;* PiWl x 
l,..., k\Plll*..., PZI-L(l)l l,..., 

(Y, jl, . . . ) ii; = 1, . . . I la) 

2) Let us assume that the values of v, ji, . . ., jk are such that the parentheses 
in the last sum on the left-hand side of identities (2.4) equals zero, i. e. AiyI,.~jk = 1. 
This signifies, firstly, that the quantity oT,._.ik can be chosen arbitrarily, in particular, 
equal to zero or defined by continui~ from the values of the real parameters. Secondly, 
by equating the terms with .$‘j, !. . - YiI, in the left and right sides of identities (2.4), 
we now obtain a formula for the symmetrized coefficients of the normal form (1.6) 

q.T,...i, =c aj,...j, BY,...j, iv, il, . . . , jh. = 1, . s , a) (3.4) 

where Al ,_.. I r is given by (3.1). while B; ,,.. j, by (3.3). 
Notes, 1’. In formulas (3.2) and (3.4) expression A;,...ik is intended to serve as a 

warning. In fact, according to formula (3.4) for AyP..j, = 0 we have cp’lII,. = 0 (Case 
(1)). For A~,*_.j, = 1 (hj, + ... -i- hjk - A., = 61 the fraction preceding 3dra%kets (sic)(*) 
(see footnote on the next page) in formula (3.2) loses its meaning, since it is then 
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indeterminate. We recall that in this case the value of aj,...jl, can be selected arbitrarily, 

2”. Let the indices jI, . . . . jk be arranged so that the first x of them (1 < x < k) 

are distinct and let iI occur lnj, times,..., iv. OCCUI ?)ljx times (mj, _t . . . + f?Ljx = k). 

Thenumber of different permutations of these indices is 
h! 

NZ rnj,l . . . n1.j ! 
x 

This means that in the sum 

i a;t...j^.xjl ... xjg 
31,. .,ik’l 

There are in all N similar terms containing xj, . . . xjh.. Therefore, N also is the factor 
in the passage from the symmetrized coefficients to the ordinary ones, i.e. when all the 
monomials in the sum are distinct. 

3”. We refer the reader to Briuno’s article Cl] for questions on the convergence of 
the normalizing transformations. 

4. Formulrr for the corfflcieatr of quadratic rnd cubic termr, 
For k = 2 formulas (3.2) - (3.4) yield the symmetrized coefficients of the quadratic 
terms of the normalizing transformation (1.2) 

and of the normal form (1.6) 

(& = 
” aj,ia (hj, + hj, - h, = 0; v, jr, i2 = 1,. . , IL) (4.2) 

Here U;,j, are the symmetrized quadratic coefficients in(l.1) (a,, . . ., a,, , see this 
expression) We emphasize that by the definition of a normal form Cpj,j? -= 0 for 

those values of V, jI, jz taken from 1, . . ., n for which hi, + hi, - h, # 0. 
On the other hand, when hj, + hi, - A, = 0 the coefficients aj,jrY can be chosen 

arbitrarily. 
For the cubic coefficients In (1.2) and (1.6). from formulas (3.2) - (3.4) with k = 3 

we have n 

a& = 
1 

hj, + xj, + kj, _ h, ai,j2j3 + + 2 [&aji2j3 + 
i=l 

(4.3) 

(ajY,i(pjPja + u&f& -L a:gpj. I,) 1 (4.4) 

(hj, + hj, -k hj, - h, = 0; T.1’1. 12, j3 =I, . . (12) 

We emphasize that here too, by virtue of the definition of normal form (1.3), we have 

l ) Editor’s Note. Obvious misprint in the Russian original; the sentenceshould 

read as follows : “. . . the fraction preceding Bj”,...j )( in formula (3.2). . . ” 



$,j,j, = 0 when hj, + kjS -I- 3Lj, - 3Ly # 0. When hi, + h, + 3LjS - h, = 0 the 
coefficients ar,jpi, of normalizing transformation (1.2) can be chosen arbitrarily. 

Note . Let usshow that if all the arbitrary quadratic coefficients in(1.2) chosen as zer0,i.e. 

if arljp = 0 when hi, + hi, - h, = 0, then all the summands in the parentheses in (4.4) 

equal zero. For example, let us show that aii$;j3 = 0 (i = 1 . . . ,n). Let US assume at 
first that A;fi, = 0 (see (3.1) ), then from (3.4) it follows that (pfzj8 = 0 for these values 

of i, jz, i3, and our assertion is valid. It remains to examine those values of i, iz, j3 

for which AjzjJ -= 1, i. e. ki = kj, + hj,. 
From (4.4) we have h, = kj, + hjz + Ais. By subtracting this from the equality just 

preceding, we obtain kj, $ ki - h, = 0 and, by virtue of the stipulated choice, we have 
c& = 0, i. e. again W; iqj,ji ‘= 0. The proof is analogous for the remaining summands in 

the parentheses in (4.4) because they are obtained from the first by a cyclic permutation 
of the indices il, is, js*. Thus, if all the arbitrary quadratic coefficients of the normali- 

zing transformation (1.2) are chosen to be zero, i. e. if 

“3yj*X0 1 (“j,--ljz--h,=O; V,ji,iz=i... ., n) 

or if quadratic terms are absent in normal form (1.3), then formula (4.4) simplifies to 

('j, + hjP + lj,, - i, z 0; v, ilt j?j i3 = l,..., 12) 

Formulas (4.3) - (4.5) refine formulas (2.4) - (2.6) in [4]. 

6. Formula, for the coefficlenta of the fourth powers. Fork=4 
formula (3.3) vields 

Ij;(,jjJla = Uj,j2jsj, + + i (S~~,i~ffj,j4 - S@j,i'p:*j,j, + 

j-1 

12 

Here S denotes the sum over all combinations of the indices on j in the first factor 
from among the numbers 1, 2, 3, 4. For the first two sums this reduces to a cyclic per- 

mutation of the indices jr, js, jar jp, while for the remaining sums the indices jtjs 
in the first factors are replaced succ%dively by jlj3, jIjG, jja, jsj.,, j3j4. By formula 
(3.2), for the symmetrized coefficients of normalizing transformation (1.2) we have 

where the hy,jzfa, have been defined in (3.1). When Xi, + kj, + hj, + hi, - 1, = 
0 the corresponding ayLjr,zfa can be chosen arbitrarily. Finally, formula (3.4) yields the 
symmetrized coefficients of normal form (1.6) 
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We consider the problem of the optimal control of the terminal state of a linear 
system containing random perturbations in the form of Gaussian white noise. 

We propose a method for the approximate solution of Bellman’s equation for one 
class of such systems in the case when the solution of the deterministic Bellman 
equation has discontinuities of the first kind in its values or in the values of its 

derivatives. As an application of the results obtained we give an approximate 
solution of Bellman’s equation corresponding to one model problem in the con- 
trol of entry into the atmosphere (see [l. 21) and we compare the result obtained 
with the results of the numerical calculations in p2]. Some methods for the ap- 

proximate solution of Bellman’s equation have been studied earlier, for example, 

in [3 - 61. Asymptotic expansions with respect to a small parameter, being the 
noise intensity, were constructed in [4 - S] for the case when the deterministic 
Bellman equation corresponding to a system without random perturbations has a 
smooth solution. Exact solutions of Bellman’s equation were obtained in [3] in 
certain cases when the system has a dimension of one. 

1. Statement of the problem. Bellmrn’r equ&tion. Let theequa- 
tion describing the motion of a system have the form 

dxidt - a (z, y, t) + 2, (x., Y, t)u (1.1) 

Here 0 < t <.i T, 5 is a scalar, IC is the control function taking values in a convex 

closed set, 1 u (t) / G; p (t), y = (y, , . . , r/J is a vector-valued function satisfying 


